您的位置:首页> 新闻资讯 > 技术资讯 >

产品工艺系列之激光切割工艺的分类


发布时间:2023-06-27

1. 汽化切割:

在高功率密度激光束的加热下,材料表面温度升至沸点温度的速度很快,足以避免热传导造成的熔化,于是部分材料汽化成蒸汽消失,部分材料作为喷出物从切缝底部被辅助气体流吹走。

2. 熔化切割 :

当入射的激光束功率密度超过某一值后,光束照射点处材料内部开始蒸发,形成孔洞。一旦这种小孔形成,它将作为黑体吸收所有的入射光束能量。小孔被熔化金属壁所包围,然后,与光束同轴的辅助气流把孔洞周围的熔融材料带走。随着工件移动,小孔按切割方向同步横移形成一条切缝。激光束继续沿着这条缝的前沿照射,熔化材料持续或脉动地从缝内被吹走。

3. 氧化熔化切割 :

熔化切割一般使用惰性气体,如果代之以氧气或其它活性气体,材料在激光束的照射下被点燃,与氧气发生激烈的化学反应而产生另一热源,称为氧化熔化切割。具体描述如下:

1)材料表面在激光束的照射下很快被加热到燃点温度,随之与氧气发生激烈的燃烧反应,放出大量热量。在此热量作用下,材料内部形成充满蒸汽的小孔,而小孔的周围为熔融的金属壁所包围。

2)燃烧物质转移成熔渣控制氧和金属的燃烧速度,同时氧气扩散通过熔渣到达点火前沿的快慢也对燃烧速度有很大的影响。氧气流速越高,燃烧化学反应和去除熔渣的速度也越快。当然,氧气流速不是越高越好,因为流速过快会导致切缝出口处反应产物即金属氧化物的快速冷却,这对切割质量也是不利的。

3)显然,氧化熔化切割过程存在着两个热源,即激光照射能和氧与金属化学反应产生的热能。据估计,切割钢时,氧化反应放出的热量要占到切割所需全部能量的60%左右。很明显,与惰性气体比较,使用氧作辅助气体可获得较高的切割速度。

4)在拥有两个热源的氧化熔化切割过程中,如果氧的燃烧速度高于激光束的移动速度,割缝显得宽而粗糙。如果激光束移动的速度比氧的燃烧速度快,则所得切缝狭而光滑。

4. 控制断裂切割 :

对于容易受热破坏的脆性材料,通过激光束加热进行高速、可控的切断,称为控制断裂切割。这种切割过程主要内容是:激光束加热脆性材料小块区域,引起该区域大的热梯度和严重的机械变形,导致材料形成裂缝。只要保持均衡的加热梯度,激光束可引导裂缝在任何需要的方向产生。

5. 压缩空气切割

对于一些不想采购切割气体的人来说,压缩空气同样可以用来切割薄板。空气加压到5-6bar就足以吹走切口中熔融金属。由于空气中接近80%都是氮气,因此压缩气体切割基本上属于熔化切割。表面上,压缩空气切割好像提供了一种相对氮气比较经济的选择,毕竟空气是免费的。然而,你必须将空气压缩、干燥、除去可能出现的油。
  考虑到这些,一副更加现实的、与氮气相比是否具有成本优势的图像便浮现出来。空气压缩系统能达到的气压和激光功率决定了能够切割的材料厚度。例如,5kw的激光和6bar的压缩空气可以切割2mm厚的板,且不留毛边。总的来说,切割边缘比采用氮气熔化切割的边缘粗糙,空气辅助切割对铝作用效果最好。

6. 火焰切割

火焰切割是切割低碳钢时采用的一种标准加工过程。火焰且各种氧气用作切割气。氧气加压到高达6bar后吹进切口。在那里,被加热的金属与氧气发生反应:它开始燃烧和氧化。化学反应释放大量的能量(达到激光能量的五倍)协助激光束进行切割。
  火焰切割使高速切割成为可能,并可以切割厚板,例如厚度超过30mm的低碳钢。然而这种过程也有缺点,切割边缘被氧化层覆盖。在零件喷漆或者亚光处理前必须将氧化层去掉,否则漆和涂层将不能附着在表面,没有保护涂层,零件不抗腐蚀。

009.jpg

上一篇:产品工艺系列之激光切割工艺
下一篇:产品工艺系列之激光切割与传统工艺对比
江苏华宇智能科技有限公司 Copyright © 2021 版权所有  ICP备案:苏ICP备2021027192号-1